# Objective methods for determining criteria weight coefficients: A modification of the CRITIC method

• Mališa Žižović University of Kragujevac, Faculty of Technical Sciences in Cacak, Cacak, Serbia
• Boža Miljković University of Novi Sad, Faculty of Education Sombor, Novi Sad, Serbia
• Dragan Marinković Technische Universität Berlin, Faculty of Mechanical and Transport Systems, Berlin, Germany
Keywords: CRITIC, criteria weights, multi-criteria decision making

### Abstract

Determining criteria weight coefficients is a crucial step in multi-criteria decision making models. Therefore, this problem is given great attention in literature. This paper presents a new approach in modifying the CRiteria Importance Through Intercreteria Correlation (CRITIC) method, which falls under objective methods for determining criteria weight coefficients. Modifying the CRITIC method (CRITIC-M) entails changing the element normalization process of the initial decision matrix and changing data aggregation from the normalized decision matrix. By introducing a new normalization process, we achieve smaller deviations between normalized elements, which in turn causes lower values of standard deviation. Thus, the relationships between data in the initial decision matrix are presented in a more objective way. By introducing a new process of aggregation of weight coefficient values in the CRITIC-M method, a more comprehensive understanding of data in the initial decision matrix is made possible, leading to more objective values of weight coefficients. The presented CRITIC-M method has been tested in two examples, followed by a discussion of results via comparison to the classic CRITIC method.

### References

Charnes, A., Cooper W.W., & Rhodes E. (1978). Measuring the efficiency of decision making units. European Journal of Operations Research, 2(6), 429-444. DOI: https://doi.org/10.1016/0377-2217(78)90138-8

Deng, H., Yeh, C.H., & Willis R.J. (2000). Inter-company comparison using modified TOPSIS with objective weights. Computers and Operations Research, 27, 963-973. DOI: https://doi.org/10.1016/S0305-0548(99)00069-6

Diakoulaki, D., Mavrotas, G., & Papayannakis, L. (1995). Determining objective weights in multiple criteria problems: the CRITIC method. Computers and Operations Research, 22, 763-770.

Diakoulaki, D., Mavrotas, G., & Papayannakis, L. (1995). Determining objective weights in multiple criteria problems: the CRITIC method. Computers and Operations Research, 22, 763-770. DOI: https://doi.org/10.1016/0305-0548(94)00059-H

Edwards, W., & Barron, H. (1994). SMARTS and SMARTER: Improved Simple Methods for Multiattribute Utility Measurement. Organizational Behavior and Human Decision Processes, 60(3), 306-325. DOI: https://doi.org/10.1006/obhd.1994.1087

Fan, Z.-P. (1996). Complicated multiple attribute decision making: theory and applications, Ph.D. Dissertation. Northeastern University, Shenyang, PRC.

Gabus, A., & Fontela, E. (1972). World Problems an Invitation to Further Thought within the Framework of DEMATEL. Battelle Geneva Research Centre, Switzerland, Geneva, 1-8.

Keeney, R. L., & Raiffa, H. (1976). Decisions with Multiple Objectives. Wiley, New York.

Keršuliene, V., Zavadskas, E. K., & Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step‐wise weight assessment ratio analysis (SWARA). Journal of business economics and management, 11(2), 243-258. DOI: https://doi.org/10.3846/jbem.2010.12

Ma, J., Fan, Z.-P., & Huang, L.-H. (1999). A subjective and objective integrated approach to determine attribute weights. European Journal of Operations Research, 112, 397-404. DOI: https://doi.org/10.1016/S0377-2217(98)00141-6

Pamučar D, Stević, Ž., & Sremac, S. (2018). A New Model for Determining Weight Coefficients of Criteria in MCDM Models: Full Consistency Method (FUCOM). Symmetry, 10(9), 393.

Roberts, R., & Goodwin, P. (2002). Weight approximations in multi-attribute decision models, Journal of Multicriteria Decision Analysis, 11, 291-303. DOI: https://doi.org/10.1002/mcda.320

Saaty T.L. (1980). Analytic hierarchy process. McGraw-Hill, New York.

Shannon, C.E., & Weaver, W. (1947). The mathematical theory of communication. Urbana: The University of Illinois Press.

Srdjevic, B., Medeiros, Y.D.P., Faria, A.S., & Schaer M. (2003). Objektivno vrednovanje kriterijuma performanse sistema akumulacija. Vodoprivreda, 35, 163-176, (Only in Serbian).

Thurstone, LL. (1927). A law of comparative judgment. Psychological Review, 34, 273. DOI: https://doi.org/10.1037/h0070288

Von Winterfeldt, D., & Edwards, W. (1986). Decision analysis and behavioral research, Cambridge University Press.

Žižović, M., & Pamucar, D. (2019). New model for determining criteria weights: Level Based Weight Assessment (LBWA) model. Decision Making: Applications in Management and Engineering, 2(2), 126-137.

Žižović, M., Pamučar, D., Ćirović, G., Žižović, M.M., & Miljković, B. (2020). A Model for Determining Weight Coefficients by Forming a Non-Decreasing Series at Criteria Significance Levels (NDSL). Mathematics, 8(5), 745.

Published
2020-10-10
How to Cite
Žižović, M., Miljković, B., & Marinković, D. (2020). Objective methods for determining criteria weight coefficients: A modification of the CRITIC method. Decision Making: Applications in Management and Engineering, 3(2), 149-161. https://doi.org/10.31181/dmame2003149z
Section
Regular articles