Designing optimized ternary catalytic alloy electrode for efficiency improvement of semiconductor gas sensors using a machine learning approach
Abstract
Catalytic noble metal (s) or its alloy (s) has long been used as the electrode material to enhance the sensing performance of the semiconducting oxide based gas sensors. In the present paper, design of optimized ternary metal alloy electrode, while the database is in pure or binary alloy compositions, using a machine learning methodology is reported for detection of CH4 gas as a test case. Pure noble metals or their binary alloys as the electrode on the semiconducting ZnO sensing layer were investigated by the earlier researchers to enhance the sensitivity towards CH4. Based on those research findings, an artificial neural network (ANN) models were developed considering the three main features of the gas sensor devices, viz. response magnitude, response time and recovery time as a function of ZnO particle size and the composition of the catalytic alloy. A novel methodology was introduced by using ANN models considered for optimized ternary alloy with enriched presentation through the multi-objective genetic algorithm (GA) wherever the generated pareto front was used. The prescriptive data analytics methodology seems to offer more or less convinced evidences for future experimental studies.
Downloads
References
Acharyya, D., Huang, K. Y. , Chattopadhyay, P. P., Ho, H. M. S., Fecht J. & Bhattacharyya, P. (2016). Hybrid 3D structures of ZnO nanoflowers and PdO nanoparticles as a highly selective methanol sensor. Analyst, 141, 2977–2989, doi: 10.1039/ c6an00326e. DOI: https://doi.org/10.1039/C6AN00326E
Acharyya, D. & Bhattacharyya, P. (2016). Alcohol sensing performance of ZnO hexagonal nanotubes at low temperatures: A qualitative understanding. Sens. Actuators B, Chem. 228, 373–386, doi: 10.1016/j.snb.2016.01.035. DOI: https://doi.org/10.1016/j.snb.2016.01.035
Anderson, J. A. (1995). An Introduction to Neural Networks. MIT Press, Cambridge MA. DOI: https://doi.org/10.7551/mitpress/3905.001.0001
Bhattacharyya, P., Basu, P. K., Mukherjee, N., Mondal, A., Saha, H. & Basu S. (2007). Deposition of nanocrystalline ZnO thin films on p-Si by novel galvanic method and application of the heterojunction as methane sensor. Journal of Materials Science: Materials in Electronics, 18 (8), 823–829. DOI: https://doi.org/10.1007/s10854-006-9105-4
Bhattacharyya, P., Bhowmik, B. & Fecht, H. J. (2015). Operating Temperature, Repeatability, and Selectivity of TiO2 Nanotube-Based Acetone Sensor: Influence of Pd and Ni Nanoparticle Modifications. IEEE Transactions on Device and Materials Reliability, 15(3). DOI: https://doi.org/10.1109/TDMR.2015.2455557
Bhattacharyya, P., Basu, P. K., Lang, C., Saha, H. & Basu S. (2008). Noble metal catalytic contacts to sol–gel nanocrystalline zinc oxide thin films for sensing methane. Sensors and Actuators B, 129 (2), 551–557.
Bhattacharyya, P., Basu, P. K., Saha H. & Basu, S. (2007). Fast response methane sensor using nanocrystalline zinc oxide thin films derived by sol–gel method. Sensors and Actuators B, 124 (1), 62–67. DOI: https://doi.org/10.1016/j.snb.2006.11.046
Basu, P. K., Bhattacharyya, P., Saha, N., Saha, H. & Basu S. (2008). The superior performance of the electrochemically grown ZnO thin films as methane sensor. Sensors and Actuators B, 133 (2), 357–363. DOI: https://doi.org/10.1016/j.snb.2008.02.035
Bhattacharyya, P., Basu, P. K., Lang, C., Saha, H. & Basu, S. (2008). Noble metal catalytic contacts to sol gel nanocrystalline zinc oxide thin films for sensing methane. Sensors and Actuators B, 129 (2), 551–557. DOI: https://doi.org/10.1016/j.snb.2007.09.001
Dey, S., Ganguly, S. & Datta, S. (2015). In silico design of high strength aluminium alloy using multi-objective GA. Springer International Publishing Switzerland, doi https://doi.org/10.1007/978-3-31920294-5_28. DOI: https://doi.org/10.1007/978-3-319-20294-5_28
DOlden, J., KJoy, M. & GDeath, R. (2004). An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecological Modelling. 178 (3-4), 389–397. DOI: https://doi.org/10.1016/j.ecolmodel.2004.03.013
Deb, K., Pratap, A., Agarwal, S. & Meyarivan T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans., Evolutionary Computation, 6, 182–19 DOI: https://doi.org/10.1109/4235.996017
Datta, S. & Chattopadhyay, P. P. Soft Computing Techniques in Advancement of Structural Metals.(2013). International Materials Reviews, 58 (8), 475-504. DOI: https://doi.org/10.1179/1743280413Y.0000000021
Deb K . (2001).Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons Ltd., Chichester.
Dey. S., Sultana, N., Kaiser, Md., S., Dey, P. & Datta, S. (2016). Computational intelligence based design of age-hardenable aluminium alloys for different temperature regimes. Materials and Design, 92, 522–534. DOI: https://doi.org/10.1016/j.matdes.2015.12.076
Datta, S. (2016). Materials Design Using Computational Intelligence Techniques, CRC Press. DOI: https://doi.org/10.1201/9781315373003
Ghosal, S., Dey, S., Bhattacharyya, P., Chattopadhyay, P. P., Datta, S. (2019). Data-driven design of ternary alloy catalysts for enhanced oxide-based gas sensors’ performance. Computational Materials Science, 161, 255-260.
Goldberg D. E. (2002). Genetic Algorithms in Search, Optimization and Machine Learning. Pearson-Education, New Delhi.
Kumar, R., Das, R. R., Mishra, V. N. & Dwivedi R. (2011). Wavelet Coefficient Trained Neural Network Classifier for Improvement in Qualitative Classification Performance of Oxygen-Plasma Treated Thick Film Tin Oxide Sensor Array Exposed to Different Odors/Gases. IEEE Sensors Journal, 11 (4). DOI: https://doi.org/10.1109/JSEN.2010.2066559
Kumar, S. (2004). Neural Network-A Classroom Approach. Tata McGraw-Hill Publishing Company Limited, New Delhi.
Longo, G. A., Zilio, C., Ortombina, L. & Zigliotto, M. (2017). Application of Artificial Neural Network (ANN) for modeling oxide-based nanofluids dynamic viscosity. International Communications in Heat and Mass Transfer, 83, 8–14. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2017.03.003
Lee, S. M. , Dyer, D. C. & Gardner J W. (2003). Design and optimisation of a high-temperature silicon micro-hotplate for nanoporous palladium pellistors. Microelectronics Journal, 34 (2), 115–126. DOI: https://doi.org/10.1016/S0026-2692(02)00153-2
Maity, I., Acharyya, D., Huang, K., Chung, P., Ho, M. & Bhattacharyya, P. (2018). A Comparative Study on Performance Improvement of ZnO Nanotubes Based Alcohol Sensor Devices by Pd and rGO Hybridization. IEEE Transactions on Electron Devices, 65( 8), 3528-3534.
Mishra, G. P., Sengupta, A., Maji, S., Sarkar, S. K. & Bhattacharyya, P. (2010). The Effect of Catalytic Metal Contact on Methane Sensing Performance of Nanoporous ZnO -Si Heterojunction. International Journal on Smart Sensing and Intelligent Systems, 3 (2). DOI: https://doi.org/10.21307/ijssis-2017-392
Pławiak, P. & Rzecki K. (2015). Approximation of Phenol Concentration Using Computational Intelligence Methods Based on Signals from the Metal-Oxide Sensor Array. IEEE Sensors Journal, 15(3).
Quaranta, F., Rella, R., Siciliano, P., Capone, S., Epifani, M. & Vasanelli, L. (1999). A novel gas sensor based on SnO2/Os thin film for the detection of methane at low temperature. Sensors and Actuators B., 58, 350–355. DOI: https://doi.org/10.1016/S0925-4005(99)00095-7
Roy, S., Sarkar, C. K. & Bhattacharyya, P. (2012). A highly sensitive methane sensor with nickel alloy microheater on micromachined Si substrate. Solid-State Electronics, 2, 76, 84-90. DOI: https://doi.org/10.1016/j.sse.2012.05.040
Ray, M., Ganguly, S., Das, M., Datta, S., Bandyopadhyay, N. R. & Hossain, S. M. (2009). ANN based model for in situ prediction of porosity of nanostructured porous silicon. Materials and Manufacturing Processes, 24 (1), 83-87. DOI: https://doi.org/10.1080/10426910802543848
Sinha, A., Sikdar, S. (Dey), Chattopadhyay,P. P. & Datta, S. (2013). Optimization of mechanical property and shape recovery behavior of Ti-(_49 at %) Ni alloy using artificial neural network and genetic algorithm. Materials and Design, 46, 227–234. DOI: https://doi.org/10.1016/j.matdes.2012.10.023
Wollenstein, J., Burgmair, M., Plescher, G.,Sulima, T., Hildenbrand, J. & Bottner, H. (2003). Cobalt oxide based gas sensors on silicon substrate for operation at low temperatures. Sensors and Actuators B, 93 (1-3), 442–448. DOI: https://doi.org/10.1016/S0925-4005(03)00168-0