A comparative empirical study of Analytic Hierarchy Process and Conjoint analysis: Literature review
Abstract
This paper is based on the main difference between conceptual and theoretical frameworks as well as literature review of comparative studies of two multi-criteria decision making methods: Analytic Hierarchy Process (AHP) and Conjoint analysis. The AHP method represents a formal framework for solving complex multiatributive decision making problems, as well as a systemic procedure for ranking multiple alternatives and/or for selecting the best from a set of available ones. Conjoint analysis is an experimental approach used for measuring individual’s preferences regarding the attributes of a product or a service. It is based on a simple premise that individuals evaluate alternatives, with these alternatives being composed of a combination of attributes whose part-worth utilities are estimated by researchers. Bearing in mind the quality of desired results, it must be dependent on the problems and aspects of research: knowledge of the methods, complexity (number of attributes and their levels), order effects, level of consistency, chooses the appropriate method.
Downloads
References
Anderson, D.R., Sweeney, D.J., Williams, T.A., Camm, J.D., & Martin, K., (2012). An Introduction to Management Science: Quantitative Approaches to Decision Making, South-Western Cengage Learning.
Bhushan, N., & Rai, K. (2007). Strategic decision making: applying the analytic hierarchy process. Springer Science & Business Media.
Danner, M., Vennedey, V., Hiligsmann, M., Fauser, S., Gross, C., & Stock, S., (2017). Comparing Analytic Hierarchy Process and Discrete-Choice Experiment to Elicit Patient Preferences for Treatment Characteristics in Age-Related Macular Degeneration. Value in Health, 20(8), 1166-1173.
Figueira, J., Greco, S., Ehrgott, M. (2005). Multycriteria Decision Analysis: State of the Art Surveys, Springer Science + Business Media, Inc., Boston. ISBN: 0¬ 387¬23067¬X.
Gustafsson, A., Ekdahl, F., & Bergman, B. (1999) Conjoint analysis: a useful tool in the design process. Total Quality Management, 10(3), 327-343.
Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C., (1995). Conjoint Analysis, in: Multivariate Data Analysis, Prentice Hall, Englewood Cliffs NJ, 556-599.
Hartmann, A., & Sattler, H. (2004). Wie robust sind Methoden zur Präferenzmessung?. in: Zeitschrift für betriebswirtschaftliche Forschung (zfbf), 56 (2), 3-22.
Helm, R., Scholl, A., Manthey, L. & Steiner, M. (2004). Measuring customer preferences in new product development: comparing compositional and decompositional methods, International Journal of Product Development, 1(1), 12–29.
Helm, R., Steiner, M., Scholl, A. & Manthey, L. (2008). A Comparative Empirical Study on common Methods for Measuring Preferences, International Journal of Management and Decision Making, 9(3), 242-265.
Ijzerman, M. J., Van Til, J. A., & Bridges, J. F. (2012). A comparison of analytic hierarchy process and conjoint analysis methods in assessing treatment alternatives for stroke rehabilitation. The Patient-Patient-Centered Outcomes Research, 5(1), 45-56.
IJzerman, M. J., van Til, J. A., & Snoek, G. J. (2008). Comparison of two multi-criteria decision techniques for eliciting treatment preferences in people with neurological disorders. The Patient: Patient-Centered Outcomes Research, 1(4), 265-272.
Kallas, Z., Lambarraa, F., & Gil, J. M., (2011). A stated preference analysis comparing the analytical hierarchy process versus choice experiments. Food quality and preference, 22(2), 181-192.
Kuzmanović, M., Savić, G., Andrić-Gušavac, B., Makajić-Nikolić, D. & Panić B. (2013a). A Conjoint-based approach to student evaluations of teaching performance. Expert Systems With Applications, 40(10), 4083-4089.
Kuzmanović, M., Savić, G., Popović, M., & Martić, M. (2013). A new approach to evaluation of university teaching considering heterogeneity of students’ preferences. Higher Education, 66(2), 153-171.
Mulye, R. (1998). An empirical comparison of three variants of the AHP and two variants of conjoint analysis, Journal of Behavioral Decision Making, 11, 263-280.
Popovic, M., Andrić Gušavac, B., & Katic, A. (2018). Multiattribute Methods as a Means for Solving Ecological Problems in Water Resources - Lake Pollution, XIII Balkan Conference on Operational Research - BALCOR 2018, Belgrade, 25-28 May, 2018, University of Belgrade, Faculty of Organizational Sciences, Serbia.
Saaty. T. L. (1980), The Analytic Hierarchy Process, McGraw-Hill, New York.
Scholl, A., Manthey, L., Helm, R., & Steiner, M. (2005). Solving multiattribute design problems with analytic hierarchy process and conjoint analysis: An empirical comparison. European Journal of Operational Research, 164(3), 760-777.
Şener, Ş., Şener, E., Nas, B., & Karagüzel, R. (2010). Combining AHP with GIS for landfill site selection: a case study in the Lake Beyşehir catchment area (Konya, Turkey). Waste management, 30(11), 2037-2046.
Tscheulin, D. K. (1991). Ein empirischer Vergleich der Eignung von Conjoint-Analyse und Analytic Hierarchy Process (AHP) zur Neuproduktplanung. Zeitschrift für Betriebswirtschaft, 61(11), 1267-1280.