Interval- valued fermatean neutrosophic graphs

  • Said Broumi Laboratory of Information Processing, Faculty of Science Ben M’Sik, University of Hassan II, Casablanca, Morocco
  • Raman Sundareswaran Department of Mathematics, Sri Sivasubramaniya Nadar College of Engineering, India
  • Marayanagaraj Shanmugapriya Department of Mathematics, Sri Sivasubramaniya Nadar College of Engineering, India
  • Giorgio Nordo Dipartimento di scienze Matematiche e Informatiche, scienze Fisiche e scienze della Terra dell'Università degli Studi di Messina, Italy
  • Mohamed Talea Laboratory of Information Processing, Faculty of Science Ben M’Sik, University of Hassan II, Casablanca, Morocco
  • Assia Bakali Ecole Royale Navale-Boulevard Sour Jdid, Casablanca, Morocco
  • Florentin Smarandache Department of Mathematics, University of New Mexico, USA
Keywords: Interval-valued Fermatean Fuzzy sets, Interval-valued Fermatean Neutrosophic sets, Interval-valued Fermatean Neutrosophic graphs

Abstract

In this work, we define Interval-valued Fermatean neutrosophic graphs and present some operations on Interval-valued Fermatean neutrosophic graphs. Further, we introduce the concepts of Regular interval-valued Fermatean neutrosophic graphs, Strong interval-valued Fermatean neutrosophic graphs, Cartesian, Composition, Lexicographic product of interval-valued Fermatean neutrosophic graphs. Finally, we give the applications of Interval-valued Fermatean neutrosophic graphs.

Downloads

Download data is not yet available.

References

Ajay, D., & Chellamani, P. (2020). Pythagorean Neutrosophic Fuzzy Graphs. International Journal of Neutrosophic Science, 11, 108-114.

Ajay, D., Karthiga, S., & Chellamani, P. (2021). A study on labelling of pythagorean neutrosophic fuzzy graphs. Journal of Computational Mathematica, 5, 105–116.

Ajay, D., Chellamani, P., Rajchakit, G., Boonsatit, N., & Hammachukiattikul, P. (2022). Regularity of Pythagorean neutrosophic graphs with an illustration in MCDM. AIMS Mathematics, 7, 9424–9442.

Ajay, D., & Chellamani, P. (2021). Pythagorean Neutrosophic Dombi Fuzzy Graphs with an Application to MCDM. Neutrosophic Sets and Systems, 47, 411-431.

Akalyadevia, K., Antony Crispin Sweety, C., & Sudamani Ramaswamy, A. R. (2022). Spherical neutrosophic graph coloring. AIP Conference Proceedings, 2393, 020217.

Atanassov, K.T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets System, 20, 87–96. DOI: https://doi.org/10.1016/S0165-0114(86)80034-3

Aydın, S., & Kutlu Gündoğdu, F. (2021). Interval-Valued Spherical Fuzzy MULTIMOORA Method and Its Application to Industry 4.0. In: Kahraman, C., Kutlu Gündoğdu, F. (eds) Decision Making with Spherical Fuzzy Sets. Studies in Fuzziness and Soft Computing, 392. Springer, Cham.

Broumi, S., Talea, M., Bakali, A., & Smarandache, F. (2016). Single valued neutrosophic graphs. Journal of New Theory, 10, 86-101.

Broumi, S., Bakali, A., Talea, M., & Smarandache, F. (2016a). Isolated single valued neutrosophic graphs. Neutrosophic Sets Systems, 11, 74–78. DOI: https://doi.org/10.1109/ISNCC.2017.8071993

Broumi, S., Smarandache, F., Talea, M., & Bakali, A. (2016b). An introduction to bipolar single valued neutrosophic graph theory. Applied Mechanics and Materials, 841, 184–191. DOI: https://doi.org/10.4028/www.scientific.net/AMM.841.184

Broumi, S., Talea, M., Bakali, A., & Smarandache, F. (2016c). On bipolar single valued neutrosophic graphs. New Trends in Neutrosophic Theory and Applications, 11, 203-221. DOI: https://doi.org/10.1109/FUZZ-IEEE.2016.7738000

Broumi, S., Mohamed Tale., Assia Bakali., & Smarandache, F. (2016d). Interval Valued Neutrosophic Graphs. Critical Review, Volume XII. DOI: https://doi.org/10.1155/2015/232919

Broumi, S., Sundareswaran, R., Shanmugapriya, M., Bakali, A. & Talea, M. (2022). Theory and Applications of Fermatean Neutrosophic Graphs. Neutrosophic Sets and Systems, 50, 248-286.

Donghai Liu., Yuanyuan Liu., & Lizhen Wang. (2019). Distance measure for Fermatean fuzzy linguistic term sets based on linguistic scale function: An illustration of the TODIM and TOPSIS methods. Journal of Intelligent Systems, 1–28.

Duran, V., Topal, S., & Smarandache, F. (2021). An application of neutrosophic logic in the confirmatory data analysis of the satisfaction with life scale. Journal of Fuzzy Extension and Applications, 2(3), 262-282.

Duleba, S., Kutlu Gündoğdu, F., & Moslem, S. (2021). Interval-Valued Spherical Fuzzy Analytic Hierarchy Process Method to Evaluate Public Transportation Development. Informatica, 32(4), 661-686.

Ejegwa, P., & Zuakwagh, D. (2022). Fermatean fuzzy modified composite relation and its application in pattern recognition. Journal of Fuzzy Extension and Applications, 3(2), 140-151.

Ganie, A. H. (2022). Multicriteria decision-making based on distance measures and knowledge measures of Fermatean fuzzy sets. Granular Computing, 1-20.

Hossein Rashmanlou., & Young Bae Jun. (2013). Complete interval-valued fuzzy graphs. Annals of Fuzzy Mathematics and Informatics, 6(3), 677–687.

Jeevaraj, S. (2021). Ordering of interval-valued Fermatean fuzzy sets and its applications. Expert Systems with Applications, 185, 115613.

Jun, Y.B., Smarandache, F., & Kim, C.S. (2017). Neutrosophic Cubic sets. New Mathematics and Natural Computation, 13, 41–54. DOI: https://doi.org/10.1142/S1793005717500041

Kartick Mohanta, Arindam Dey & Anita Pal. (2020). A Study on Picture Dombi Fuzzy Graph. Decision Making: Applications in Management and Engineering, 3(2), 119-130. DOI: https://doi.org/10.31181/dmame2003119m

Kutlu Gündoğdu, F., & Kahraman, C. (2021). Hospital Performance Assessment Using Interval-Valued Spherical Fuzzy Analytic Hierarchy Process. In: Kahraman, C., Kutlu Gündoğdu, F. (eds) Decision Making with Spherical Fuzzy Sets. Studies in Fuzziness and Soft Computing, vol 392. Springer, Cham.

Kutlu Gündoğdu, F., & Kahraman, C. (2019). A novel fuzzy TOPSIS method using emerging interval-valued spherical fuzzy sets. Engineering Applications of Artificial Intelligence, 85, 307–323.

Lakhwani, T.S., Mohanta, K., & Dey, A. (2022). Some operations on Dombi neutrosophic graph. Journal of Ambient Intelligence and Humanized Computing, 13, 425–443.

Lathamaheswari, M., Nagarajan, D., Garg, H., & Kavikumar, J. (2021). Interval Valued Spherical Fuzzy Aggregation Operators and Their Application in Decision Making Problem. In: Kahraman, C., Kutlu Gündoğdu, F. (eds) Decision Making with Spherical Fuzzy Sets. Studies in Fuzziness and Soft Computing, 392. Springer, Cham.

Li, J., Alburaikan, A. & de Fátima Muniz, R. (2022), Evaluation of safety-based performance in construction projects with neutrosophic data envelopment analysis, Management Decision, Vol. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/MD-02-2022-0237

Mahesh, V., Sundareswaran, R., Nikileswari, L., Varsha, S., & Harsha, B. Comparative Study of Dental Implant Materials Using Digraph Techniques. AIP Conference Proceedings, (accepted for publication).

Mishra, S. N. & Pal, A. (2013). Product of interval-valued intuitionistic fuzzy graph. Annals of Pure and Applied Mathematics, 5(1), 37–46.

Mohamed Ismayil, A. & Mohamed Ali, A. (2014). On Strong Interval-Valued Intuitionistic Fuzzy Graph. International Journal of Fuzzy Mathematics and Systems, 4(2), 161-168.

Mohamed S.Y., & Ali A.M. (2018). Interval-valued Pythagorean fuzzy graph. Journal of Computer and Mathematical Sciences, 9(10), 1497-1511.

Muhammad Akram., Noura Omair Alshehri., & Wieslaw A. Dudek. (2013). Certain Types of Interval-Valued Fuzzy Graphs. Journal of Applied Mathematics, 857070, 1-11. DOI: https://doi.org/10.1155/2013/857070

Nagarajan, D., Lathamaheswari, M., Broumi, S., & Kavikumar, J. (2019). Dombi interval valued neutrosophic graph and its role in traffic control management. Neutrosophic Sets and Systems, 124, 114-133.

Peng Xu., Hao Guan., Talebi, A. A., Ghassemi, M., & Hossein Rashmanlou. (2022). Certain Concepts of Interval-Valued Intuitionistic Fuzzy Graphs with an Application. Advances in Mathematical Physics, 6350959, 1-12.

Polymenis, A. (2021). A neutrosophic Student’s t –type of statistic for AR (1) random processes. Journal of Fuzzy Extension and Applications, 2(4), 388-393.

Sanapati, T., & Yager. R. Yager. (2019). Fermatean Fuzzy Sets. Journal of Ambient Intelligence and Humanized Computing, 11, 663-674.

Şahin, R. (2015). Cross-entropy measure on interval neutrosophic sets and its applications in multicriteria decision making. Neural Computing and Applications, 1-11. DOI: https://doi.org/10.1007/s00521-015-2131-5

Smarandache, F. (2019). Neutrosophic Set is a Generalization of Intuitionistic Fuzzy Set, Inconsistent Intuitionistic Fuzzy Set (Picture Fuzzy Set, Ternary Fuzzy Set), Pythagorean Fuzzy Set (Atanassov’s Intuitionistic Fuzzy Set of second type), q-Rung Orthopair Fuzzy Set, Spherical Fuzzy Set, and n-Hyper Spherical Fuzzy Set, while Neutrosophication is a Generalization of Regret Theory, Grey System Theory, and Three-Ways Decision (revisited), Journal of New Theory. 29, 01-35.

Smarandache, F. (2017). Spherical Neutrosophic Numbers, in the book Neutrosophic Perspectives: Triplets, Duplets, Multisets, Hybrid Operators, Modal Logic, Hedge Algebras. And Applications, Second extended and improved edition. Pons Publishing House Brussels. Section II.2, 28-29.

Smarandache, F. (2020). Generalizations and alternatives of classical algebraic structures to neutroAlgebraic structures and antiAlgebraic structures. Journal of Fuzzy Extension and Applications, 1(2), 81-83.

Smarandache, F. (2022). Plithogeny, Plithogenic Set, Logic, Probability and Statistics: A Short Review.

Stephen, S., & Helen, M. (2021). Interval-valued Neutrosophic Pythagorean Sets and their Application Decision Making using IVNP-TOPSIS. International Journal of Innovative Research in Science. Engineering and Technology, 10 (1), 14571- 14578.

Sriganesh, R., Sundareswaran, R., Shanmugapriya, M., & Pandikumar, M. (2021). A Study of power plant selection process – A graph theoretic approach. Journal of Physics.: Conference Series, 1921, 012081.

Sundareswaran R., Sangeetha, P., Shanmugapriya, M., Thaga Sheriff, M., Benasir, M., Shri Thrisha, A., & Sathyaprakash, R. Assessment of structural cracks in buildings using single-valued neutrosophic DEMATEL model, https://doi.org/10.1016/j.matpr.2022.04.156, Materials Today: Proceedings ( accepted for publication).

Wang, C., Hu, Z. & Bao, Z. (2022), Evaluation of the government entrepreneurship support by a new dynamic neutrosophic operator based on time degrees. Management Decision, 2022-0305.

Xindong P., & Yong Y. (2016). Fundamental properties of interval-valued Pythagorean fuzzy Aggregation Operators. International Journal of Intelligent Systems, 31, 444–487. DOI: https://doi.org/10.1002/int.21790

Yahya, S., Mohamed & Mohamed Ali, A. (2018). On Strong Interval-valued Pythagorean Fuzzy Graph. Journal of Applied Science and Computations, 5(10), 699- 713.

Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8, 338 - 353. DOI: https://doi.org/10.1016/S0019-9958(65)90241-X

Zhang, K., Xie, Y., Noorkhah, S.A., Imeni, M. and Das, S.K. (2022), Neutrosophic management evaluation of insurance companies by a hybrid TODIM-BSC method: a case study in private insurance companies, Management Decision, Vol. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/MD-01-2022-0120

Published
2022-07-12
How to Cite
Broumi, S., Sundareswaran, R., Shanmugapriya, M., Nordo, G., Talea, M., Bakali, A., & Smarandache, F. (2022). Interval- valued fermatean neutrosophic graphs. Decision Making: Applications in Management and Engineering, 5(2), 176-200. https://doi.org/10.31181/dmame0311072022b