Imperfect production inventory model with uncertain elapsed time
Abstract
Most of the classical inventory control model assumes that all items received conform to quality characteristics. However, in practice, items may be damaged due to production conditions, transportation and environmental conditions. Modelling such real world problems involve various indeterminate phenomena which can be estimated through human beliefs. The uncertainty theory proposed by Liu (2015) is extensively regarded as an appropriate tool to deal with such uncertainty. This paper investigates the optimum production run time and optimum cost in an imperfect production process, where the rate of imperfect items are different in different states of the process. The process may be shifting from ‘in-control’ state to the ‘out-of-control’ state is an uncertain variable with certain uncertainty distribution. Some propositions are derived for the optimal production run time and optimized the expected total cost function per unit time. Finally, numerical examples have been illustrated to study the practical feasibility of the model.
Downloads
References
Chen, C. K., & Lo, C. C. (2006). Optimal production run length for products sold with warranty in an imperfect production system with allowable shortages. Mathematical and Computer Modelling, 44, 319-331. DOI: https://doi.org/10.1016/j.mcm.2006.01.019
Chen, S. H., Wang, S. T., & Chang S. M. (2005). Optimization of fuzzy production inventory model with repairable defective products under crisp and fuzzy production quantity. International Journal of Operations Research, 2(2), 31-37.
Chen, L., Peng, J., Liu, Z., & Zaho, R. (2016). Pricing and effort decisions for a supply chain with uncertain information. International Journal of Production Research, 55(1), 264-284. DOI: https://doi.org/10.1080/00207543.2016.1204475
Chiu, S. W., Wang, S. L., & Chiu, Y. S. P. (2007). Determining the optimal run time for EPQ model with scrap, rework, stochastic breakdowns. European Journal of Operational Research, 180, 664-676. DOI: https://doi.org/10.1016/j.ejor.2006.05.005
Chiu, Y. S. P., Chen, K. K., Cheng, F. T., & Wu, M. F. (2010). Optimization of the finite production rate with scrap, rework and stochastic machine breakdown. Computers and Mathematics with Applications, 59, 919-932. DOI: https://doi.org/10.1016/j.camwa.2009.10.001
Gao Y., & Kar S., (2017). Uncertain solid transportation problem with product blending. International Journal of Fuzzy Systems, 19(6), 1916-1926. DOI: https://doi.org/10.1007/s40815-016-0282-x
Hiriga, M., & Ben Daya, M. (1998). The economic manufacturing lot-sizing problem with imperfect production process: Bounds and optimal solutions. Naval Research Logistics, 45, 423-432. DOI: https://doi.org/10.1002/(SICI)1520-6750(199806)45:4<423::AID-NAV8>3.0.CO;2-7
Hu, F., & Zong, Q. (2009). Optimal production run time for a deteriorating production system under an extended inspection policy. European Journal of Operational Research, 196, 979-986. DOI: https://doi.org/10.1016/j.ejor.2008.05.008
Hussain, A. Z. M. O., & Murthy, D. N. P. (2003). Warranty and Optimal Reliability Improvement through Product Development. Mathematical and Computer Modelling, 38, 1211-1217. DOI: https://doi.org/10.1016/S0895-7177(03)90122-1
Jiang, Y., Yan, H., & Zhu, Y. (2016). Optimal Control Problem for uncertain linear systems with multiple input delays. Journal of Uncertainty Analysis and Applications, 4, 1-15. DOI: https://doi.org/10.1186/s40467-016-0048-x
Kar, M. B., Majumder, S., Kar, S., & Pal, T. (2017). Cross-entropy based multi-objective uncertain portfolio selection problem. Journal of Intelligent & Fuzzy Systems, 32(6), 4467-4483. DOI: https://doi.org/10.3233/JIFS-169212
Ke, H., Li, Y., & Huang ,H. (2015). Uncertain pricing decision problem in closed-loop supply chain with risk-averse retailer. Journal of Uncertainty Analysis and Application, 3, 1-14. DOI: https://doi.org/10.1186/s40467-015-0039-3
Ke, H., & Liu, B. (2010). Fuzzy Project Scheduling problems and its hybrid intelligent Algorithm. Applied Mathematical Modeling, 34(2), 301-308. DOI: https://doi.org/10.1016/j.apm.2009.04.011
Khouja, M., & Meherez, A (1994). An economic production lot size model with imperfect quality and variable production rate. Journal of the Operational Research Society, 45, 1405-1417. DOI: https://doi.org/10.1057/jors.1994.217
Liu, B. (2012). Why is there a need for uncertainty theory?. Journal of Uncertainty Systems, 6(1), 3-10.
Liu, B. (2015). Uncertainty theory: A branch of Mathematics for Modeling Human uncertainty. (4th ed.). Berlin: Springer-Verlag.
Liu, B. (2016). Uncertainty theory: A branch of Mathematics for Modeling Human uncertainty. In Liu, B Uncertainty Theory (pp. 1-79). Berlin: Springer-Verlag. DOI: https://doi.org/10.1007/978-3-662-44354-5
Liu, B. (2009). Theory and Practice of Uncertain Programming. (2nd ed.). Berlin: Springer-Verlag. DOI: https://doi.org/10.1007/978-3-540-89484-1_7
Liu, Y., & Ha, M. (2010). Expected value of function of uncertain variables. Journal of Uncertain Systems, 4(3), 181-186.
Liu,Y., Li, X., & Xiong, C. (2015). Reliability analysis of unrepairable systems with uncertain lifetimes. International Journal of Security and its Application, 9(12), 289-298. DOI: https://doi.org/10.14257/ijsia.2015.9.12.28
Majumder, S., Kar, S., & Pal, T. (2018). Mean-Entropy Model of Uncertain Portfolio Selection Problem. In: JK Mandal, S, Mukhopadhyay, P, Dutta (Eds.), Multi-Objective Optimization: Evolutionary to Hybrid Framework. (pp. 25-54). Singapore: Spinger.
Majumder, S., Kundu, P., Kar, S., Pal, T. (2018). Uncertain multi-objective multi-item fixed charge solid transportation problem with budget constraint. In Majumder, S., Kundu, P., Kar, S., Pal, T (Eds.), Soft Computing (pp.3279-3301). Berlin: Springer. DOI: https://doi.org/10.1007/s00500-017-2987-7
Qin, Z., & Kar, S. (2013). Single-period inventory problem under uncertain environment. Applied Mathematics and Computation, 219, 9630-9638. DOI: https://doi.org/10.1016/j.amc.2013.02.015
Qin Z., Kar, S., & Zheng, H. (2016). Uncertain portfolio adjusting model using semiabsolute deviation. Soft Computing, 20(2), 717-725. DOI: https://doi.org/10.1007/s00500-014-1535-y
Rosenbaltt, M. J., & Lee, H. L. (1986). Economic production cycles with imperfect production process. IIE Transactions, 17, 48-54. DOI: https://doi.org/10.1080/07408178608975329
Sana, S. S. (2010). An economic production lot size model in an imperfect production system. European Journal of Operational Research, 201, 158-170. DOI: https://doi.org/10.1016/j.ejor.2009.02.027
Sana, S. S. (2010). A production-inventory model in an imperfect production process. European Journal of Operational Research, 200, 451-64. DOI: https://doi.org/10.1016/j.ejor.2009.01.041
Wang, D., Qin Z., & Kar, S. (2015). A novel single period inventory problem with uncertain random demand and its application. Applied Mathematics and Computation, 269, 133-145. DOI: https://doi.org/10.1016/j.amc.2015.06.102
Wang, X., & Tang, W. (2009). Optimal production run length in deteriorating production process with fuzzy elapsed time. Computer and Industrial Engineering, 56, 1627-1632. DOI: https://doi.org/10.1016/j.cie.2008.10.012
Widyadana, G. A., & Wee, H. M. (2011). Optimal deteriorating items production inventory models with random machine breakdown and stochastic repair time. Applied Mathematical Modelling, 35(7), 3495-3508. DOI: https://doi.org/10.1016/j.apm.2011.01.006
Yeh, R. H., Ho, W. T., & Tseng, S. T. (2000). Optimal production run length for products sold with warranty. European Journal of Operational Research, 120, 575-582. DOI: https://doi.org/10.1016/S0377-2217(99)00004-1
Yeh, R. H., Chen, M. Y., & Lin, C. Y. (2007). Optimal periodic replacement policy for repairable products under free-repair warranty. European Journal of Operational Research, 176, 1678-1686. DOI: https://doi.org/10.1016/j.ejor.2005.10.047
Yeo, W. M., & Yuan, XueMing. (2009). Optimal warranty policies for systems with imperfect repair. European Journal of Operational Research, 199, 187-197. DOI: https://doi.org/10.1016/j.ejor.2008.10.036
Yun, Won Young., Murthy, D. N. P. & Jack, N. (2008). Warranty servicing with imperfect repair. International Journal of Production Economics, 111, 159-169. DOI: https://doi.org/10.1016/j.ijpe.2006.12.058
Zhou, C., Tang, W., & Zhao, R. (2014). An uncertain search model for recruitment problem with enterprise performance. Journal of Intelligent Manufacturing, 28(3), 695-704. DOI: https://doi.org/10.1007/s10845-014-0997-1